Contextual AI Assistant Framework: Research & Proposal

(Updated with Mem0 Integration)

1. Introduction

The proposed system aims to create a contextual AI assistant that can understand user activities across applications by continuously ingesting screen data and responding to complex queries that traditional RAG systems struggle with. This document outlines a comprehensive approach using Mem0's hybrid memory architecture.

2. System Architecture

2.1 High-Level Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│                 │    │                 │    │                 │
│  Client Device  │───►│  Ingestion API  │───►│ Processing Layer│
│                 │    │                 │    │                 │
└─────────────────┘    └─────────────────┘    └────────┬────────┘
                                                       │
                                                       ▼
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│                 │    │                 │    │                 │
│   Query API     │◄───│     LLM Layer   │◄───│   Mem0 Memory   │
│                 │    │                 │    │     System      │
└─────────────────┘    └─────────────────┘    └─────────────────┘

2.2 Core Components

  1. Ingestion API (/ingest)
  2. Processing Layer
  3. Mem0 Memory System
  4. LLM Layer
  5. Query API (/chat_completion)

3. Technical Approach

3.1 Mem0 Integration

Based on research, Mem0 provides an ideal foundation for our system as it:

  1. Combines Multiple Storage Types: Integrates vector, key-value, and graph databases in a unified memory layer
  2. Supports Multi-Level Memory: Manages user, session, and agent memory with adaptive personalization
  3. Provides Self-Improving Memory: Continuously learns from user interactions
  4. Offers Simple APIs: Streamlines memory management with straightforward methods