Recent advancements in contextual AI systems have moved beyond traditional RAG (Retrieval-Augmented Generation) to incorporate structured knowledge representation:
┌─────────────────┐ ┌───────────────────┐ ┌─────────────────┐
│ Data Ingestion │────▶│ Knowledge Building │────▶│ Query Processing│
└─────────────────┘ └───────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌───────────────────┐ ┌─────────────────┐
│ App-Specific │ │ Neo4j Knowledge │ │ FastAPI Service │
│ Parsers │ │ Graph │ │ │
└─────────────────┘ └───────────────────┘ └─────────────────┘
@app.post("/ingest")
async def ingest_data(screen_data: ScreenData):
# 1. Identify application type
app_type = application_detector.identify(screen_data)
# 2. Apply app-specific parsing
parser = parser_factory.get_parser(app_type)
parsed_data = parser.parse(screen_data)
# 3. Extract entities and relationships
entities, relationships = entity_extractor.extract(parsed_data, app_type)
# 4. Update knowledge graph
graph_builder.update(entities, relationships)
return {"status": "success"}