# Example operations from documentation
memory.add("User prefers email responses.", user_id="client123")
graph_query = memory.search("manager", user_id="user123", context_type="graph")
relationships = memory.search("colleague", user_id="user123", context_type="graph")
semantic_search = memory.search("AI trends", user_id="user999", context_type="vector")
Hybrid Database Approach:
Mem0 uses a combination of: Graph database for relationship tracking Vector database for semantic similarity Traditional database for metadata storage
Mem0's hybrid datastore is a sophisticated foundation that balances the need for fast fact retrieval (KV), deep contextual understanding (Vector), and nuanced relationship mapping (Graph)
Integration with AI Frameworks:
Look at how Mem0 integrates with platforms like CrewAI:
from crewai.memory import LongTermMemory
# Example of integrating Mem0 for enhanced user memory
Links:
https://docs.mem0.ai/quickstart
https://github.com/EthicalML/awesome-production-machine-learning
https://microsoft.github.io/autogen/0.2/ >→→ more
https://microsoft.github.io/autogen/0.2/docs/ecosystem. →→→Research more!
https://dev.to/yigit-konur/mem0-the-comprehensive-guide-to-building-ai-with-persistent-memory-fbm